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PLEASE FILL OUT YOUR 
EVALUATIONS... 

Thank you! 
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OVERVIEW 

• Distributed Enterprise Applications 

– WHAT ARE DISTRIBUTED ENTERPRISE APPLICATIONS? 

– HOW DO THE KEY ARCHITECTURES DIFFER? 

• Distributed Architectures 

– WHAT ARE THEY? 

– KEY ARCHITECTURAL ISSUES  

– 2-TIER VS. 3-TIER 

– APPLICATION SERVERS AND TP MONITORS 

• Scalability 

– WHAT IS IT? 

• Performance 
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OVERVIEW 

• Transactions: Concepts, Design, and Management 

– WHY TRANSACTIONS MATTER 

• Principles of Scalable Design 

– WHAT MAKES ENTERPRISE APPLICATIONS FAIL? 

– WHY ARCHITECTURES FAIL 

– KEY CLIENT DESIGN PRINCIPLES 

– KEY DATABASE DESIGN PRINCIPLES 

• Challenge the speaker 

– Q & A 

– AUDIENCE CONCERNS 
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DISTRIBUTED  
ENTERPRISE  

APPLICATIONS 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

• Definition 

DISTRIBUTED: DIVIDED AND SHARED, PLACED AT DIFFERENT 
POINTS 

ENTERPRISE: A BUSINESS ACTIVITY OR INITIATIVE 

APPLICATION: A PROGRAM APPLIED TO SOLVE A PARTICULAR 
PROBLEM 

or “A DIVIDED AND SHARED PROGRAM, PLACED AT DIFFERENT 
POINTS AND APPLIED TO SOLVE A PARTICULAR PROBLEM 
ASSOCIATED WITH THE BUSINESS ACTIVITY” 

• Enterprise is Understood to Imply: 

– ASSOCIATED WITH THE MISSION (PERHAPS MISSION CRITICAL)  

– ROBUST 

– AVAILABLE 

– MANAGEABLE 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

WHY? 

• Why Enterprise? 

– I.T. MUST JUSTIFY THE BUSINESS VALUE OF PROJECTS 

– ENTERPRISE APPLICATIONS HAVE BUSINESS VALUE (BY DEF.) 

– ENTERPRISE APPLICATIONS MUST PERFORM AND SCALE 

– ACCESSIBILTY HAS BECOME CRUCIAL 

• Why Distributed? 

– BUSINESS REQUIRMENTS ARE CHANGING RAPIDLY 

– TECHNOLOGY IS CHANGING RAPIDLY 

– ENTERPRISE APPLICATIONS OFTEN HAVE HIGHLY VARIABLE 
LOAD 

– DISTRIBUTED APPLICATIONS ARE FLEXIBLE AND SCALABLE 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

 WHY? 

• Distribution of Processing Load 

• Distribution of Access 

• Better Off-the-shelf Tools 

– DESIGN 

– DEVELOPMENT 

– END-USER REPORTING AND QUERY 

• Removable of I.T. Bottlenecks 

• Independent Hardware Upgrades 

• Better Load Balancing 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

A LITTLE HISTORICAL PERSPECTIVE 

• Mainframe Applications 

– MONOLITHIC WITH TERMINAL ACCESS 

– ROBUST, BUT SENSITIVE ENVIRONMENT 

– UNRESPONSIVE TO BUSINESS CHANGE 

– APPLICATION BACKLOG 

– GOOD PERFORMANCE BUT DID NOT SCALE 

– INTRODUCED SYSTEM SERVICES 

• Remote Access 

– SLOW DIAL UP, REMOTE JOB ENTRY 

– TERMINAL SERVERS IMPROVED CONNECTION MULTIPLEXING 
AND POOLING 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

A LITTLE HISTORICAL PERSPECTIVE 

• Minicomputers and (D)ARPANET 

– GREATER EMPHASIS ON SHARED SERVICES 

– DEDICATED MINICOMPUTERS BECAME “SERVERS” 

– EARLY MESSAGE-BASED COMPUTING (ETHERNET) 

• Early Clusters 

– INTRODUCED DISTRIBUTED LOCK MANAGEMENT 

– ADDED AVAILABILITY, SIMPLY FAULT TOLERANCE, AND SOME 
SCALABILITY 

– NETWORK BASED TERMINAL ACCESS  



C. 1998, Alternative Technologies, All Rights Reserved                                                 Page 11  

DISTRIBUTED ENTERPRISE 
APPLICATIONS 

A LITTLE HISTORICAL PERSPECTIVE 

• Client/Server 

– SIMPLE PARTITIONED FUNCTIONAL LOAD MODEL 

– MAINTAINED CENTRALIZED CONTROL 

– INITIALLY SERIAL / PARALLEL DIRECT ACCESS, NETWORK 

– FOCUS ON DBMS SERVER, PRINT AND NETWORK SERVERS 
CAME LATER 

– IMPROVED SCALABILITY AND PERFORMANCE 

– MOST IMPLEMENTATIONS FAILED TO MEET EXPECTATIONS 

– WIDESPREAD EXPERIENCE WITH DISTRIBUTED DESIGN 

– SERVER OFTEN BECAME A BOTTLENECK 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

A LITTLE HISTORICAL PERSPECTIVE 

• Cooperative Processing and Peer-to-Peer 

– FULL DISTRIBUTION AND FUNCTION SHARING 

– REQUIRED DISTRIBUTED CONTROL 

– TOO COMPLICATED TO DESIGN, DEVELOP, AND MANAGE 

– PEER-TO-PEER APPLICATIONS RARELY SUCCEEDED 

• Multi-tier Client/Server 

– INTRODUCED TP MONITORS  

» CONNECTION OVERHEAD, DISTRIBUTED TRANSACTIONS 

– INTRODUCED APPLICATION SERVERS 

» IMPROVED DEPLOYMENT PROBLEM 

– MORE COMPLEX APPLICATION PARTITIONING 
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DISTRIBUTED ENTERPRISE 
APPLICATIONS 

A LITTLE HISTORICAL PERSPECTIVE 

• Network Computing and “Thin Client” 

– EVOLUTION OF DISTRIBUTED PRESENTATION AND 
APPLICATION SERVERS 

– INTEGRATION WITH OBJECT ORIENTED PROGRAMMING 

– REQUIRES INTEROPERABILITY STANDARDS 

• The Web and The Emergence of the Extraprise 

– DISTRIBUTION MOVES BEYOND THE ENTERPRISE 

– DRIVEN BY BUSINESS RAPID CHANGE 

– ENABLED BY PORTABILITY STANDARDS 

» HTML AND JAVA 

– SCALABILITY AND PERFORMANCE PROBLEMS ABOUND 
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DISTRIBUTION 
ARCHITECTURES 
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DISTRIBUTED ARCHITECTURES 

• Distributed Architectures Permit Distributed 
Deployment 

• Distribution Requires: 

– EFFICIENCY OF COMMUNICATIONS 

– MODULARITY OF COMPONENTS 

– PROPER FUNCTIONAL PARTITIONING 

• Key Decisions  

– FAT VS. THIN CLIENT 

– APPLICATION AND MIDDLEWARE SERVERS 

– TP MONITORS / TRANSACTION SERVERS 

– APPLICATION PARTITIONING 

– NUMBER OF TIERS 
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THE PURPOSE OF ARCHITECTURE 

(Technical) Architecture Is A Set of Rules and 
Protocols 

• Rules for Functional Partitioning 
– WHAT GENERATES REQUESTS 

– WHAT SERVICES REQUESTS 

– DISTRIBUTABLE COMPONENT GRANULARITY 

• Rules Mandating Uniform Component Properties 

• Interoperation Protocols 
– COMPONENT INTERFACES 

– COMMUNICATION 

• Hardware Utilization 
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ARCHITECTURE ISSUES 

• Synchronization:  

– BLOCKING VS. NON-BLOCKING 

• Request Granularity:  

– INTERFACE-DRIVEN VS. BUSINESS FUNCTION DRIVEN 

• Event Management 

– TIGHT VS. WEAK COUPLING TO THE USER INTERFACE 

• Processing: 

– PROCEDURAL VS. NON-PROCEDURAL 

• Distribution: 

– SINGLE PLATFORM VS. MULTI-PLATFORM DEPLOYMENT 

Architecture determines distributed functional 
performance and scalability! 
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SERVER ARCHITECTURE 

• Task Granularity  

– PROCESS VS. THREADS  

– SINGLE VS. MULTI-THREADED 

• Scheduling and Optimization 

– PREEMPTIVE VS. NON-PREEMPTIVE 

– TASK PRIORITIZATION 

– LOAD BALANCING 

• State Management 

Server architecture determines distributed request 
performance and scalability! 
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PLATFORM ARCHITECTURE 

• Operating System Characteristics 
– TASK MANAGEMENT 

– RESOURCE MANAGEMENT 

• Hardware Characteristics 
– UNIPROCESSER, SMP, CLUSTER, SHARED NOTHING 

» SPEED 

– RESOURCES (MEMORY, DISK SPACE, ETC.) 

• Single vs. Multiple Platforms 
 

 

Platform architecture determines distributed system 
performance and scalability! 
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SINGLE PLATFORM 
ARCHITECTURES 

• Presentation Logic and Application Software Reside 
on the Same Hardware 

• Communicate Through:  

– NETWORK SERVICES (LOOP-BACK) 

– OPERATING SYSTEM FACILITIES: SHARED MEMORY, PIPES, 
MAILBOXES, ETC. 

• Presentation Can Be Thin Client 

– CHEAP 
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SINGLE PLATFORM 
ARCHITECTURES 

KEY STRENGTHS 

• Faster Response Time Due to Decreased Network 
Costs 

• Simplified System Management 

• Scalable to Multiple Platform Architectures 

– IF GOOD DESIGN PRACTICES ARE FOLLOWED! 

• Faster Debugging 

– A GOOD WAY TO DEVELOP, PROTOTYPE, AND TEST 
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SINGLE PLATFORM 
ARCHITECTURES 

• May Encourage Non-distributed Design 

• Platform May Have to Be Very Powerful 

• User Interface Management Not Distributed 

• User Context Management Not Distributed 

• Difficult to Tune  

– DIFFERENT GOALS FOR SERVER PORTION AND CLIENT 
PORTION INTERFERE WITH EACH OTHER 

SINGLE PLATFORM 
ARCHITECTURES 

KEY WEAKNESSES 
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MULTIPLE PLATFORM 
ARCHITECTURES 

• Client and server software can reside on different 
hardware 

• Network Communication 

– LAN, WAN, DEDICATED LINE, SATELLITE, RF, ETC. 

– ASYNC 

• Distribution Protocols 

– COM 

– CORBA 

•  Can be multiple clients, multiple servers, and multi-
tier 
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MULTIPLE PLATFORM 
ARCHITECTURES 

KEY STRENGTHS 

• If You Don't Do It Right, It Doesn't Work! 

– HIGHLY VISIBLE ERRORS ENCOURAGE BETTER DESIGN THAN 
SINGLE PLATFORM 

• Load Balancing Is Possible 

– BETWEEN CLIENT AND SERVER 

– ACROSS MULTIPLE SERVERS 

• Better Server Environment Tuning Possible 

– ASSUMES DEDICATED TASK SERVER 
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MULTIPLE PLATFORM 
ARCHITECTURES 

• IF YOU DON'T DO IT RIGHT, IT DOESN'T WORK! 

– DESIGN ERRORS CAN BE COSTLY 

• Higher Communications Overhead 

• State Management Is Required Across Platforms  

• Distributed System Management Is Required 

MULTIPLE PLATFORM 
ARCHITECTURES 

KEY WEAKNESSES 
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TWO-TIER 

• Draw Your Architecture in Tiers 

• “Classic” Client/Server Is Physical Two-tier 

– SIMPLIFIED SYSTEM MANAGEMENT 

– SIMPLIFIED APPLICATION DESIGN 

– SERVER MIGHT BECOME A BOTTLENECK 

» SINGLE SERVER SUPPORTS VERTICAL SCALABILITY ONLY 

» MULTIPLE SERVERS SUPPORT BOTH HORIZONTAL AND 
VERTICAL SCALABILITY 

• Viewed Logically, Two-tier Can Be M:M  

– TODAY’S SYSTEMS DON’T SUPPORT TRANSPARENT 
HORIZONTAL SERVER SCALABILITY 
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MULTI-TIER 

• Middle Tier Can Be TP Monitors or Application 
Servers 

• DBMS Servers Can Be Multi-Tier Hierarchies 

– MAY USE DISTRIBUTED DBMS OR REPLICATION 

• Application Servers 

– CAN BE ANY APPLICATION OR FUNCTIONAL CODE 

– NEED NOT BE COMPLEX 

– NEED NOT BE SPECIFICALLY DESIGNED AS A SERVICE 

– CAN BE SINGLE OR MULTI-THREADED   

– CAN BE SINGLE OR MULTIPLE INSTANCE 
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TP MONITORS 
ADVANTAGES 

• Stable Queues (Tasks vs. Messages) 

• Both Database and Non-database Transactions 

• Task Scheduling, Dispatch, and Distribution 

• Prioritization 

• Resource Sharing 

• Potentially High Levels of Recovery/Availability 

– INFLIGHT RECOVERY 
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• Requires Programmatic Control 

• Complex Environment 

• Not Database Integrated 

– DATABASE SCHEDULING 

– OPTIMIZATION 

– 2PC WHEN YOU DON’T NEED IT 

– SUBTRANSACTIONS CAN LIVELOCK 

• Does Not Preserve Database User Identity  

TP MONITORS 
DISADVANTAGES 
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SERVER ARCHITECTURES 

Server Usage 

• Multi-user vs. single user clients 

• Multi-transaction clients 

• Multi-session clients 

• Multi-connection clients 

• Multi-server clients 

– SERIAL 

– PARALLEL (SYNCHRONOUS SERVER USE) 

– CONCURRENT (ASYNCHRONOUS SERVER USE) 
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SERVER ARCHITECTURES 

Application Architecture 

• Stateless vs. state-dependent 

• Serial client/server 

• Synchronous client/server multi-tasking 

• Asynchronous client/server multi-processing 

• Single tasking vs. multi-tasking clients 

– MULTI-THREADING 
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TYPES OF SERVER 
ARCHITECTURES 

• Local Server  

– SINGLE-USER ON THE CLIENT 

– CACHING RELATIVELY STATIC OBJECTS 

– EASY DEVELOPMENT AND ADMINISTRATION AT THE EXPENSE 
OF LIMITED SCALABILITY  

• Remote Server  

– SINGLE SITE TRANSACTIONS BY DEFINITION 

– LIMITED APPLICATION MIX 

– IMPROVED SYSTEM SCALABILITY FOR THE PRICE OF 
DISTRIBUTED DESIGN  
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TYPES OF SERVER 
ARCHITECTURES 

• Multiple Remote Servers 

– SINGLE-SITE READ AND WRITE TRANSACTIONS  

– SEGMENTABLE BY TRANSACTION OR APPLICATION OR USER 
REQUIRED 

– MODERATE SCALABILITY AT DEVELOPMENT, MAINTENANCE, 
AND ADMINISTRATION EXPENSE 

• Distributed Transaction Server  

– MULTI-SITE READ AND WRITE TRANSACTIONS 

– SEGMENTABLE BY TRANSACTION OR APPLICATION OR USER 
DESIRABLE TO MINIMIZE OVERHEAD 

– GOOD SCALABILITY AT DEVELOPMENT, MAINTENANCE, AND 
ADMINISTRATION EXPENSE 
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TYPES OF SERVER 
ARCHITECTURES 

• Distributed Servers  

– COMPLEX TRANSACTIONS 

– SHARED-NOTHING (LARGE DATABASES) 

» FUNCTION SHIPPING AMONG SERVER PEERS 

– TWO-PHASE COMMIT OVERHEAD (OR ITS EQUIVALENT) 
REQUIRED 

– HIGH SCALABILITY AT THE EXPENSE OF ADDITIONAL 
RESOURCES AND DESIGN SOPHISTICATION 

– PROVIDES THE BEST INDEPENDENCE BETWEEN APPLICATION 
CODE AND SERVICE LOCATION 
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SCALABILITY 
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SCALABILITY 

• Formal Definition 

– SCALEUP VS. SPEEDUP 

– OVER A RANGE 

– WITH RESPECT TO A RESOURCE 

– FOR A PARTICULAR WORKLOAD 

» NUMBER OF USERS, DB SIZE, TRANSACTION RATE, 
TRANSACTION COMPLEXITY 

• Scale up 
MORE RESOURCES = SAME PERFORMANCE FOR BIGGER 

WORKLOAD 

• Speed up 
MORE RESOURCES = BETTER PERFORMANCE FOR SAME 

WORKLOAD 
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SCALEUP OR SPEEDUP  
NOT PROVABLE BY EXAMPLE 

SCALEUP AND SPEEDUP ARE: 
– PLATFORM AND APPLICATION SPECIFIC 

– STRONGLY AFFECTED BY TRANSACTION AND DB DESIGN 
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WHAT DOES PERCENT SCALABILITY MEAN? 
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SOME TYPES OF SCALABILITY 

• Administrative scalability 

• Platform scalability 

• Processor scalability 

• Horizontal scalability 

MORE BOXES APPROACH 

• Vertical scalability 

BIGGER BOXES APPROACH 

• Functional scalability - extensibility 

• Hardware vs. software 



C. 1998, Alternative Technologies, All Rights Reserved                                                 Page 41  

WHAT AFFECTS SCALABILITY? 

• Efficiency of Resource Usage 

– DETERMINES BASELINE AND INCREMENTAL PERFORMANCE 

– DYNAMIC OPTIMIZATION 

• Parallelism 

– IMPROVES RESOURCE USAGE 

• State Management 

– CLIENT (COOKIE) 

– MIDDLEWARE 

– APPLICATION SERVER 

– STATE SERVER 

• Load Balancing and Scheduling 
– ROUND ROBIN, FIFO, LEAST LOAD 
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WHAT ENABLES SCALABILITY? 

• Application Tool Flexibility 

• Designing for Multi-user Systems 

• Context-free Applications and Transactions 

– NON-CONVERSATIONAL 

– STATELESS SESSIONS 

• Capacity 

• Configuration Control 

 

Choosing the right architecture(s) for the job! 
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PLATFORM SCALABILITY 
CLUSTERING 

• Clustering Primarily Provides, and Is Used For, 
High Availability 

– GENERALLY NOT A SCALABILITY SOLUTION 

• Great Care Is Required to Obtain Even Moderate 
Scaleup or Speedup  

– CROSS-NODE CLUSTER RESOURCE USAGES IS NON-LINEAR 

• Designed More Like a Federation of Loosely 
Coupled Systems 

• Costs Can Be High 

– DESIGN TIME, ADDITIONAL ADMINISTRATION, POSSIBLY 
CODING, AND LOCK OR CACHE COHERENCE MANAGEMENT 
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PROCESSOR SCALABILITY 
NOT AN ABSOLUTE ATTRIBUTE 
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PROCESSOR SCALABILITY  

ARBITRARY SPEEDUP IS NOT POSSIBLE  

PROCESSOR SPEEDUP (T) FOLLOWS AMDAHL’S LAW:        
T = 1 / ((1 – M) + (M / N)) 

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 1

N = #CPUs

T
 =

 S
P

E
E

D
U

P
  

IF M=0.8 (80%), T<5 

IF M=0.4 (40%), T<1.66… 



C. 1998, Alternative Technologies, All Rights Reserved                                                 Page 46  

PERFORMANCE 
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PERFORMANCE 
DEFINITION 

• (MINIMUM) RESPONSE TIME 

– TIME TO FIRST RESPONSE 

• ELAPSED TIME 

– AMOUNT OF TIME TO COMPLETE A UNIT OF WORK 

• THROUGHPUT 

– AMOUNT OF WORK COMPLETED IN A TIME PERIOD 

– FOR A SINGLE TYPE OF REQUEST 

– FOR A SPECIFIC WORKLOAD MIX 

• CONCURRENCY 

– NUMBERS OF USERS ACTIVE 

– CONNECTED USERS AFFECT SYSTEM LOAD 
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WHAT IS PERFORMANCE? 

• COMPARING PERFORMANCE 

– WITH RESPECT TO FIXED RESOURCES 

– FOR A PARTICULAR WORKLOAD 

» NUMBER OF USERS, TRANSACTION RATE 

» TRANSACTION COMPLEXITY, DB SIZE, ETC. 

• PERFORMANCE BENCHMARKS 

– RESOURCES AREN’T FIXED 

– WORKLOADS AREN’T WELL-DEFINED 

– RESULTS AREN’T REPEATABLE 

 

Transaction design is crucial! 
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PERFORMANCE 
MINIMUM RESPONSE TIME 

MIINIMUM RESPONSE TIME IS PERCEIVED! 

• Defer Confirming Request Send 

• Confirm Request Receipt Immediately 

• Give the User More to Do by Not Blocking 

• Minimize Request Responses 

– AVOID UNNECESSARY REPORTS AND BROWSING UPDATES 
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PERFORMANCE 
ELAPSED TIME  

(aka COMPLETE RESPONSE TIME) 

• Minimize Inter-Component Communication 

– WITHIN A BUSINESS TRANSACTION 

• Minimize State Management 

• Avoid Inter-component Synchronization 

– STATE SHOULD NOT BE DISTRIBUTED 

– IMPLIES REQUEST CANNOT BE CONVERSATIONAL 

• Add Resources As Required 

– ONLY WORKS IF REQUEST IS NON-PROCEDURAL 
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PERFORMANCE 
THROUGHPUT 

• Set Task Priorities by Request Class 

• Balance Load Across Platform Resources  

• Tune Servers for the Entire Workload 

– AVOID TUNING FOR A SINGLE REQUEST 

• Add Resources to Achieve Desired Throughput 

• Balance Load Within Each Platform 

– PARALLEL SUB-TASKS SHOULD COMPLETE TOGETHER 
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PERFORMANCE 
CONCURRENCY 

RESOURCE CONFLICTS ARE THE PRIMARY ENEMY 

• Minimize Resource Usage 

• Localize Each Resource Use in Time 

• Avoid Resource Waits Through Transaction Design 

– CONFLICT ANALYSIS CAN HELP WITH SCHEDULING 

• Use Connection Multi-plexing and Pooling to 
Minimize Overhead 

• Balance User Load  

– ACROSS PLATFORM RESOURCES 

– WITHIN PLATFORM RESOURCES  
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TRANSACTIONS 
 

CONCEPTS, DESIGN, AND MANAGEMENT 
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TRANSACTIONS 
DEFINITION 

A UNIT OF WORK HAVING WELL-DEFINED 
BOUNDARIES 

• BUSINESS TRANSACTION 

– THE UNIT OF AUDIT 

– BOUNDARIES ARE AUDIT POINTS 

• LOGICAL TRANSACTION 

– THE UNIT OF CONSISTENCY 

– BOUNDARIES MEET A SET OF CONSISTENCY CONDITIONS 

• PHYSICAL TRANSACTION 

– THE UNIT OF RECOVERY 

– BOUNDARIES ARE RECOVERABLE STATES 
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UNDERSTANDING TRANSACTIONS 
BUSINESS TRANSACTIONS 

ONLY BUSINESS TRANSACTIONS (UNIT OF 
AUDIT) ARE IMPLEMENTATION INDEPENDENT 

- VERSUS LOGICAL TRANSACTIONS (UNIT OF 
CONSISTENCY) 

- VERSUS PHYSICAL TRANSACTIONS (UNIT OF RECOVERY) 
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UNDERSTANDING TRANSACTIONS 
LOGICAL TRANSACTIONS  

• Maintain Integrity and Consistency 

• Transition a Database Between Two Consistent 
States 

• Requires ACID Properties 

– ATOMICITY - ALL OR NOTHING  

» STATEMENT ATOMICITY IS PART OF RELATIONAL MODEL 

– CONSISTENCY  

– ISOLATION 

– DURABILITY 
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UNDERSTANDING TRANSACTIONS 
 LOGICAL TRANSACTIONS  

• Serializability 

• Isolation and Anomalies 

– LOST UPDATES 

» ONE TRANSACTION OVERWRITES ANOTHER’S UPDATE 

– UNCOMMITTED DEPENDENCIES   

» ONE TRANSACTION READS/UPDATES ANOTHER'S 
UNCOMMITTED UPDATE 

» THE UNCOMMITTED DATA IS SOMETIMES CALLED A 
“PHANTOM” 
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UNDERSTANDING TRANSACTIONS 
 LOGICAL TRANSACTIONS  

• Isolation and Anomalies (continued) 

– INCONSISTENT ANALYSIS 

» ONE TRANSACTION IS PERMITTED TO READ DATA BOTH 
BEFORE AND AFTER ANOTHER TRANSACTION UPDATES IT  

» NON-REPEATABLE READS 

• Special Types of Transactions 

– SAVEPOINTS 

– ASYNCHRONOUS TRANSACTIONS 

– NESTED TRANSACTIONS 
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UNDERSTANDING TRANSACTIONS 
 LOGICAL TRANSACTIONS  

• Remote Transactions 

• Distributed Transactions 

– TWO-PHASE COMMIT 

• Explicit Transaction Boundaries 

– CRITICAL FOR DISTRIBUTED SYSTEMS! 

– NECESSARY FOR TP MONITOR INTERFACES 
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• Understand transaction structure 
– AN INITIAL READ PHASE 

– AVOID RE-READING DATA 

– A WRITE PHASE THAT BEGINS WITH THE FIRST INSERT, 
UPDATE, OR DELETE 

•  Minimize the write phase 
– DATA TOUCHED 

– TIME TO COMMIT 

– CONSIDER PRE-READING DURING THE READ PHASE 

• Minimize transaction scope 
– MINIMIZE NUMBER OF ACTIONS 

• Non-conversational transactions are best 

UNDERSTANDING TRANSACTIONS 
 DESIGN ISSUES  
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UNDERSTANDING TRANSACTIONS  
DESIGN ISSUES 
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TRANSACTION DESIGN 
CONFLICT ANALYSIS 

• Identify transactions that can interfere 

 

• Why?                                        

– SCHEDULE TRANSACTIONS AND REDUCE CONTENTION 

» Avoid submitting two or more transactions that require 
locking to guarantee isolation 

» Unfortunately, you must do the scheduling yourself. 

– INCREASE RESPONSE TIME AND THROUGHPUT 
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TRANSACTION DESIGN 
CONFLICT ANALYSIS 

Two transactions cannot interfere if: 

– THEY DON'T TOUCH THE SAME DATA 

– THEY ARE READ ONLY 

– THEY COMMUTE 

OR 

– THEY DON'T RUN AT THE SAME TIME 
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TRANSACTION DESIGN 
CONFLICT ANALYSIS 

Two Transactions Cannot Interfere If: 

– THEY DON'T TOUCH THE SAME DATA 

– THEY ARE READ ONLY 

– THEY COMMUTE 

OR 

– THEY DON'T RUN AT THE SAME TIME 
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CONFLICT EXAMPLE 

 Which pairs of the following can interfere? 

• 1: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ AND CITY = ‘NEW YORK’ 

• 2: UPDATE SUPPLIERS SET SNAME = ‘OLD_CO_NAME’ WHERE 
SNAME = ‘NEW_CO_NAME’ AND CITY = ‘NEW YORK’ 

• 3: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ AND CITY <> ‘NEW YORK’ 

• 4: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE 
SNAME = ‘OLD_CO_NAME’ OR CITY <> ‘NEW YORK’ 

 

• What level of transaction isolation enforcement is required? 

• What is the effect of existence or non-existence of indexes?  
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PRINCIPLES  
OF  

SCALABLE DESIGN 
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WHY DO IMPLEMENTATIONS FAIL? 

• Minimize State Management 

– BUSINESS FUNCTION REQUESTS 

– MAINTAIN AUDIT POINTS IN A DATABASE 

• Avoid Optimistic Concurrency Control 

– TOO DIFFICULT TO MAINTAIN CONSISTENCY 

• Implementation and Maintenance Must Be 
Disciplined 

• Performance or Scalability Must Be Planned 

• System Management Must Be Designed-In 

• Perform a Cost/Benefit Analysis 
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WHY DO IMPLEMENTATIONS FAIL? 

• Server Design Should Not Be Too Use Specific 

– GENERIC SERVER DESIGNS ENSURE FLEXIBILITY 

– DATABASE DESIGNS AND DBMS TUNING AS A SYSTEM 

• Avoid Field-by-field Validation  

– FROM CLIENT TO SERVER 

• Avoid Excessive Messaging 

– CACHE DATA WHEN RE-USE IS ANTICIPATED 

– AVOID TRANSACTION ROLLBACK 

– SEND ENTIRE TRANSACTIONS 

– USE SET PROCESSING 
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APPLICATION DESIGN ISSUES 

• Architecture 

– LOCATE PROCESS ACCORDING TO INTEGRITY RULES 

– STATE-FREE VERSUS STATE-DEPENDENT INTEGRITY RULES 

• Application type and design 

– USE STATELESS SESSIONS 

– AVOID CONVERSATIONAL SERVER INTERACTIONS 

– CONSIDER MULTIPLE PARALLEL SESSIONS (CHECK 
OVERHEAD FIRST) 

– USE SET PROCESSING 
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APPLICATION DESIGN ISSUES 

• Use Proper Transaction Design Techniques 

• Design for:  

– COMPONENT-BASED APPLICATION SERVICES 

» COARSE GRAINED COMPONENTS RECEIVE FRONT-END 
REQUESTS 

» SHOULD SUPPORT BUSINESS TRANSACTIONS 

» IMPLEMENT VIA FINE GRAINED COMPONENTS 

– STORED PROCEDURES 

– ASYNCHRONOUS MESSAGES 

» FRONT-END SHOULD NEVER BLOCK 

– TRANSACTION SHIPPING 
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DATABASE DESIGN ISSUES 

• Normalize the Logical Design 

• Avoid Denormalization and Nulls in the Physical 
Design 

• Use Association Tables and Lookup Tables 

• Use Surrogate Keys 

• Enforce Orthogonality, Completeness, and 
Minimality Design Principles 

• Concurrency and Conflict Analysis 

These Provide Implementation Independence! 
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SUMMARY 

• Good Distributed Application Design Is Different! 
– DON’T LET OLD HABITS GET IN THE WAY OF SUCCESS 

• Use The Right Architecture for the Job 
– INVEST IN THE ARCHITECTURE(S) YOU NEED FROM THE 

BEGINNING 

• Design Your Transactions for Concurrency and 
Stateless Behavior 
– SCALABILITY WILL FOLLOW ASSUMING THE ARCHITECTURE IS 

SCALABLE  

– INSIST THAT YOUR DBMS BECOME MORE AND MORE 
RELATIONAL 
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PLEASE FILL OUT YOUR 
EVALUATIONS... 

Thank you! 


