
 David McGoveran

 Alternative Technologies

 13150 Highway 9, Suite 123

 Boulder Creek, CA 95006

 Telephone: 831/338-4621

 www.AlternativeTech.com

ENTERPRISE
APPLICATIONS THAT

SCALE AND PERFORM

Enterprise Architectue Conference

Boston

August 30, 1998

1:00 P.M. - 5:00 P.M.

C. 1998, Alternative Technologies, All Rights Reserved Page 2

PLEASE FILL OUT YOUR
EVALUATIONS...

Thank you!

C. 1998, Alternative Technologies, All Rights Reserved Page 3

OVERVIEW

• Distributed Enterprise Applications

– WHAT ARE DISTRIBUTED ENTERPRISE APPLICATIONS?

– HOW DO THE KEY ARCHITECTURES DIFFER?

• Distributed Architectures

– WHAT ARE THEY?

– KEY ARCHITECTURAL ISSUES

– 2-TIER VS. 3-TIER

– APPLICATION SERVERS AND TP MONITORS

• Scalability

– WHAT IS IT?

• Performance

C. 1998, Alternative Technologies, All Rights Reserved Page 4

OVERVIEW

• Transactions: Concepts, Design, and Management

– WHY TRANSACTIONS MATTER

• Principles of Scalable Design

– WHAT MAKES ENTERPRISE APPLICATIONS FAIL?

– WHY ARCHITECTURES FAIL

– KEY CLIENT DESIGN PRINCIPLES

– KEY DATABASE DESIGN PRINCIPLES

• Challenge the speaker

– Q & A

– AUDIENCE CONCERNS

C. 1998, Alternative Technologies, All Rights Reserved Page 5

DISTRIBUTED
ENTERPRISE

APPLICATIONS

C. 1998, Alternative Technologies, All Rights Reserved Page 6

DISTRIBUTED ENTERPRISE
APPLICATIONS

• Definition

DISTRIBUTED: DIVIDED AND SHARED, PLACED AT DIFFERENT
POINTS

ENTERPRISE: A BUSINESS ACTIVITY OR INITIATIVE

APPLICATION: A PROGRAM APPLIED TO SOLVE A PARTICULAR
PROBLEM

or “A DIVIDED AND SHARED PROGRAM, PLACED AT DIFFERENT
POINTS AND APPLIED TO SOLVE A PARTICULAR PROBLEM
ASSOCIATED WITH THE BUSINESS ACTIVITY”

• Enterprise is Understood to Imply:

– ASSOCIATED WITH THE MISSION (PERHAPS MISSION CRITICAL)

– ROBUST

– AVAILABLE

– MANAGEABLE

C. 1998, Alternative Technologies, All Rights Reserved Page 7

DISTRIBUTED ENTERPRISE
APPLICATIONS

WHY?

• Why Enterprise?

– I.T. MUST JUSTIFY THE BUSINESS VALUE OF PROJECTS

– ENTERPRISE APPLICATIONS HAVE BUSINESS VALUE (BY DEF.)

– ENTERPRISE APPLICATIONS MUST PERFORM AND SCALE

– ACCESSIBILTY HAS BECOME CRUCIAL

• Why Distributed?

– BUSINESS REQUIRMENTS ARE CHANGING RAPIDLY

– TECHNOLOGY IS CHANGING RAPIDLY

– ENTERPRISE APPLICATIONS OFTEN HAVE HIGHLY VARIABLE
LOAD

– DISTRIBUTED APPLICATIONS ARE FLEXIBLE AND SCALABLE

C. 1998, Alternative Technologies, All Rights Reserved Page 8

DISTRIBUTED ENTERPRISE
APPLICATIONS

 WHY?

• Distribution of Processing Load

• Distribution of Access

• Better Off-the-shelf Tools

– DESIGN

– DEVELOPMENT

– END-USER REPORTING AND QUERY

• Removable of I.T. Bottlenecks

• Independent Hardware Upgrades

• Better Load Balancing

C. 1998, Alternative Technologies, All Rights Reserved Page 9

DISTRIBUTED ENTERPRISE
APPLICATIONS

A LITTLE HISTORICAL PERSPECTIVE

• Mainframe Applications

– MONOLITHIC WITH TERMINAL ACCESS

– ROBUST, BUT SENSITIVE ENVIRONMENT

– UNRESPONSIVE TO BUSINESS CHANGE

– APPLICATION BACKLOG

– GOOD PERFORMANCE BUT DID NOT SCALE

– INTRODUCED SYSTEM SERVICES

• Remote Access

– SLOW DIAL UP, REMOTE JOB ENTRY

– TERMINAL SERVERS IMPROVED CONNECTION MULTIPLEXING
AND POOLING

C. 1998, Alternative Technologies, All Rights Reserved Page 10

DISTRIBUTED ENTERPRISE
APPLICATIONS

A LITTLE HISTORICAL PERSPECTIVE

• Minicomputers and (D)ARPANET

– GREATER EMPHASIS ON SHARED SERVICES

– DEDICATED MINICOMPUTERS BECAME “SERVERS”

– EARLY MESSAGE-BASED COMPUTING (ETHERNET)

• Early Clusters

– INTRODUCED DISTRIBUTED LOCK MANAGEMENT

– ADDED AVAILABILITY, SIMPLY FAULT TOLERANCE, AND SOME
SCALABILITY

– NETWORK BASED TERMINAL ACCESS

C. 1998, Alternative Technologies, All Rights Reserved Page 11

DISTRIBUTED ENTERPRISE
APPLICATIONS

A LITTLE HISTORICAL PERSPECTIVE

• Client/Server

– SIMPLE PARTITIONED FUNCTIONAL LOAD MODEL

– MAINTAINED CENTRALIZED CONTROL

– INITIALLY SERIAL / PARALLEL DIRECT ACCESS, NETWORK

– FOCUS ON DBMS SERVER, PRINT AND NETWORK SERVERS
CAME LATER

– IMPROVED SCALABILITY AND PERFORMANCE

– MOST IMPLEMENTATIONS FAILED TO MEET EXPECTATIONS

– WIDESPREAD EXPERIENCE WITH DISTRIBUTED DESIGN

– SERVER OFTEN BECAME A BOTTLENECK

C. 1998, Alternative Technologies, All Rights Reserved Page 12

DISTRIBUTED ENTERPRISE
APPLICATIONS

A LITTLE HISTORICAL PERSPECTIVE

• Cooperative Processing and Peer-to-Peer

– FULL DISTRIBUTION AND FUNCTION SHARING

– REQUIRED DISTRIBUTED CONTROL

– TOO COMPLICATED TO DESIGN, DEVELOP, AND MANAGE

– PEER-TO-PEER APPLICATIONS RARELY SUCCEEDED

• Multi-tier Client/Server

– INTRODUCED TP MONITORS

» CONNECTION OVERHEAD, DISTRIBUTED TRANSACTIONS

– INTRODUCED APPLICATION SERVERS

» IMPROVED DEPLOYMENT PROBLEM

– MORE COMPLEX APPLICATION PARTITIONING

C. 1998, Alternative Technologies, All Rights Reserved Page 13

DISTRIBUTED ENTERPRISE
APPLICATIONS

A LITTLE HISTORICAL PERSPECTIVE

• Network Computing and “Thin Client”

– EVOLUTION OF DISTRIBUTED PRESENTATION AND
APPLICATION SERVERS

– INTEGRATION WITH OBJECT ORIENTED PROGRAMMING

– REQUIRES INTEROPERABILITY STANDARDS

• The Web and The Emergence of the Extraprise

– DISTRIBUTION MOVES BEYOND THE ENTERPRISE

– DRIVEN BY BUSINESS RAPID CHANGE

– ENABLED BY PORTABILITY STANDARDS

» HTML AND JAVA

– SCALABILITY AND PERFORMANCE PROBLEMS ABOUND

C. 1998, Alternative Technologies, All Rights Reserved Page 14

DISTRIBUTION
ARCHITECTURES

C. 1998, Alternative Technologies, All Rights Reserved Page 15

DISTRIBUTED ARCHITECTURES

• Distributed Architectures Permit Distributed
Deployment

• Distribution Requires:

– EFFICIENCY OF COMMUNICATIONS

– MODULARITY OF COMPONENTS

– PROPER FUNCTIONAL PARTITIONING

• Key Decisions

– FAT VS. THIN CLIENT

– APPLICATION AND MIDDLEWARE SERVERS

– TP MONITORS / TRANSACTION SERVERS

– APPLICATION PARTITIONING

– NUMBER OF TIERS

C. 1998, Alternative Technologies, All Rights Reserved Page 16

THE PURPOSE OF ARCHITECTURE

(Technical) Architecture Is A Set of Rules and
Protocols

• Rules for Functional Partitioning
– WHAT GENERATES REQUESTS

– WHAT SERVICES REQUESTS

– DISTRIBUTABLE COMPONENT GRANULARITY

• Rules Mandating Uniform Component Properties

• Interoperation Protocols
– COMPONENT INTERFACES

– COMMUNICATION

• Hardware Utilization

C. 1998, Alternative Technologies, All Rights Reserved Page 17

ARCHITECTURE ISSUES

• Synchronization:

– BLOCKING VS. NON-BLOCKING

• Request Granularity:

– INTERFACE-DRIVEN VS. BUSINESS FUNCTION DRIVEN

• Event Management

– TIGHT VS. WEAK COUPLING TO THE USER INTERFACE

• Processing:

– PROCEDURAL VS. NON-PROCEDURAL

• Distribution:

– SINGLE PLATFORM VS. MULTI-PLATFORM DEPLOYMENT

Architecture determines distributed functional
performance and scalability!

C. 1998, Alternative Technologies, All Rights Reserved Page 18

SERVER ARCHITECTURE

• Task Granularity

– PROCESS VS. THREADS

– SINGLE VS. MULTI-THREADED

• Scheduling and Optimization

– PREEMPTIVE VS. NON-PREEMPTIVE

– TASK PRIORITIZATION

– LOAD BALANCING

• State Management

Server architecture determines distributed request
performance and scalability!

C. 1998, Alternative Technologies, All Rights Reserved Page 19

PLATFORM ARCHITECTURE

• Operating System Characteristics
– TASK MANAGEMENT

– RESOURCE MANAGEMENT

• Hardware Characteristics
– UNIPROCESSER, SMP, CLUSTER, SHARED NOTHING

» SPEED

– RESOURCES (MEMORY, DISK SPACE, ETC.)

• Single vs. Multiple Platforms

Platform architecture determines distributed system
performance and scalability!

C. 1998, Alternative Technologies, All Rights Reserved Page 20

SINGLE PLATFORM
ARCHITECTURES

• Presentation Logic and Application Software Reside
on the Same Hardware

• Communicate Through:

– NETWORK SERVICES (LOOP-BACK)

– OPERATING SYSTEM FACILITIES: SHARED MEMORY, PIPES,
MAILBOXES, ETC.

• Presentation Can Be Thin Client

– CHEAP

C. 1998, Alternative Technologies, All Rights Reserved Page 21

SINGLE PLATFORM
ARCHITECTURES

KEY STRENGTHS

• Faster Response Time Due to Decreased Network
Costs

• Simplified System Management

• Scalable to Multiple Platform Architectures

– IF GOOD DESIGN PRACTICES ARE FOLLOWED!

• Faster Debugging

– A GOOD WAY TO DEVELOP, PROTOTYPE, AND TEST

C. 1998, Alternative Technologies, All Rights Reserved Page 22

SINGLE PLATFORM
ARCHITECTURES

• May Encourage Non-distributed Design

• Platform May Have to Be Very Powerful

• User Interface Management Not Distributed

• User Context Management Not Distributed

• Difficult to Tune

– DIFFERENT GOALS FOR SERVER PORTION AND CLIENT
PORTION INTERFERE WITH EACH OTHER

SINGLE PLATFORM
ARCHITECTURES

KEY WEAKNESSES

C. 1998, Alternative Technologies, All Rights Reserved Page 23

MULTIPLE PLATFORM
ARCHITECTURES

• Client and server software can reside on different
hardware

• Network Communication

– LAN, WAN, DEDICATED LINE, SATELLITE, RF, ETC.

– ASYNC

• Distribution Protocols

– COM

– CORBA

• Can be multiple clients, multiple servers, and multi-
tier

C. 1998, Alternative Technologies, All Rights Reserved Page 24

MULTIPLE PLATFORM
ARCHITECTURES

KEY STRENGTHS

• If You Don't Do It Right, It Doesn't Work!

– HIGHLY VISIBLE ERRORS ENCOURAGE BETTER DESIGN THAN
SINGLE PLATFORM

• Load Balancing Is Possible

– BETWEEN CLIENT AND SERVER

– ACROSS MULTIPLE SERVERS

• Better Server Environment Tuning Possible

– ASSUMES DEDICATED TASK SERVER

C. 1998, Alternative Technologies, All Rights Reserved Page 25

MULTIPLE PLATFORM
ARCHITECTURES

• IF YOU DON'T DO IT RIGHT, IT DOESN'T WORK!

– DESIGN ERRORS CAN BE COSTLY

• Higher Communications Overhead

• State Management Is Required Across Platforms

• Distributed System Management Is Required

MULTIPLE PLATFORM
ARCHITECTURES

KEY WEAKNESSES

C. 1998, Alternative Technologies, All Rights Reserved Page 26

TWO-TIER

• Draw Your Architecture in Tiers

• “Classic” Client/Server Is Physical Two-tier

– SIMPLIFIED SYSTEM MANAGEMENT

– SIMPLIFIED APPLICATION DESIGN

– SERVER MIGHT BECOME A BOTTLENECK

» SINGLE SERVER SUPPORTS VERTICAL SCALABILITY ONLY

» MULTIPLE SERVERS SUPPORT BOTH HORIZONTAL AND
VERTICAL SCALABILITY

• Viewed Logically, Two-tier Can Be M:M

– TODAY’S SYSTEMS DON’T SUPPORT TRANSPARENT
HORIZONTAL SERVER SCALABILITY

C. 1998, Alternative Technologies, All Rights Reserved Page 27

MULTI-TIER

• Middle Tier Can Be TP Monitors or Application
Servers

• DBMS Servers Can Be Multi-Tier Hierarchies

– MAY USE DISTRIBUTED DBMS OR REPLICATION

• Application Servers

– CAN BE ANY APPLICATION OR FUNCTIONAL CODE

– NEED NOT BE COMPLEX

– NEED NOT BE SPECIFICALLY DESIGNED AS A SERVICE

– CAN BE SINGLE OR MULTI-THREADED

– CAN BE SINGLE OR MULTIPLE INSTANCE

C. 1998, Alternative Technologies, All Rights Reserved Page 28

TP MONITORS
ADVANTAGES

• Stable Queues (Tasks vs. Messages)

• Both Database and Non-database Transactions

• Task Scheduling, Dispatch, and Distribution

• Prioritization

• Resource Sharing

• Potentially High Levels of Recovery/Availability

– INFLIGHT RECOVERY

C. 1998, Alternative Technologies, All Rights Reserved Page 29

• Requires Programmatic Control

• Complex Environment

• Not Database Integrated

– DATABASE SCHEDULING

– OPTIMIZATION

– 2PC WHEN YOU DON’T NEED IT

– SUBTRANSACTIONS CAN LIVELOCK

• Does Not Preserve Database User Identity

TP MONITORS
DISADVANTAGES

C. 1998, Alternative Technologies, All Rights Reserved Page 30

SERVER ARCHITECTURES

Server Usage

• Multi-user vs. single user clients

• Multi-transaction clients

• Multi-session clients

• Multi-connection clients

• Multi-server clients

– SERIAL

– PARALLEL (SYNCHRONOUS SERVER USE)

– CONCURRENT (ASYNCHRONOUS SERVER USE)

C. 1998, Alternative Technologies, All Rights Reserved Page 31

SERVER ARCHITECTURES

Application Architecture

• Stateless vs. state-dependent

• Serial client/server

• Synchronous client/server multi-tasking

• Asynchronous client/server multi-processing

• Single tasking vs. multi-tasking clients

– MULTI-THREADING

C. 1998, Alternative Technologies, All Rights Reserved Page 32

TYPES OF SERVER
ARCHITECTURES

• Local Server

– SINGLE-USER ON THE CLIENT

– CACHING RELATIVELY STATIC OBJECTS

– EASY DEVELOPMENT AND ADMINISTRATION AT THE EXPENSE
OF LIMITED SCALABILITY

• Remote Server

– SINGLE SITE TRANSACTIONS BY DEFINITION

– LIMITED APPLICATION MIX

– IMPROVED SYSTEM SCALABILITY FOR THE PRICE OF
DISTRIBUTED DESIGN

C. 1998, Alternative Technologies, All Rights Reserved Page 33

TYPES OF SERVER
ARCHITECTURES

• Multiple Remote Servers

– SINGLE-SITE READ AND WRITE TRANSACTIONS

– SEGMENTABLE BY TRANSACTION OR APPLICATION OR USER
REQUIRED

– MODERATE SCALABILITY AT DEVELOPMENT, MAINTENANCE,
AND ADMINISTRATION EXPENSE

• Distributed Transaction Server

– MULTI-SITE READ AND WRITE TRANSACTIONS

– SEGMENTABLE BY TRANSACTION OR APPLICATION OR USER
DESIRABLE TO MINIMIZE OVERHEAD

– GOOD SCALABILITY AT DEVELOPMENT, MAINTENANCE, AND
ADMINISTRATION EXPENSE

C. 1998, Alternative Technologies, All Rights Reserved Page 34

TYPES OF SERVER
ARCHITECTURES

• Distributed Servers

– COMPLEX TRANSACTIONS

– SHARED-NOTHING (LARGE DATABASES)

» FUNCTION SHIPPING AMONG SERVER PEERS

– TWO-PHASE COMMIT OVERHEAD (OR ITS EQUIVALENT)
REQUIRED

– HIGH SCALABILITY AT THE EXPENSE OF ADDITIONAL
RESOURCES AND DESIGN SOPHISTICATION

– PROVIDES THE BEST INDEPENDENCE BETWEEN APPLICATION
CODE AND SERVICE LOCATION

C. 1998, Alternative Technologies, All Rights Reserved Page 35

SCALABILITY

C. 1998, Alternative Technologies, All Rights Reserved Page 36

SCALABILITY

• Formal Definition

– SCALEUP VS. SPEEDUP

– OVER A RANGE

– WITH RESPECT TO A RESOURCE

– FOR A PARTICULAR WORKLOAD

» NUMBER OF USERS, DB SIZE, TRANSACTION RATE,
TRANSACTION COMPLEXITY

• Scale up
MORE RESOURCES = SAME PERFORMANCE FOR BIGGER

WORKLOAD

• Speed up
MORE RESOURCES = BETTER PERFORMANCE FOR SAME

WORKLOAD

C. 1998, Alternative Technologies, All Rights Reserved Page 37

SCALEUP OR SPEEDUP
NOT PROVABLE BY EXAMPLE

SCALEUP AND SPEEDUP ARE:
– PLATFORM AND APPLICATION SPECIFIC

– STRONGLY AFFECTED BY TRANSACTION AND DB DESIGN

Transaction rate versus CPUs

0

100

200

300

400

1X 2X 3X 4X

Number of CPUs

T
ra

n
s
a
c
ti
o

n
s
/s

e
c

CLUSTERS

SMP

IDEAL

C. 1998, Alternative Technologies, All Rights Reserved Page 38

 TWO LINEAR SYSTEMs SUPER-LINEAR

SCALEUP AND SPEEDUP
LINEARITY AND SUPER-LINEAR

0

100

200

300

400

1X 2X 3X 4X

 SYSTEM 1

SYSTEM 2 RESOURCE 2

RESOURCE 1

0

100

200

300

400

1X 2X 3X 4X

C. 1998, Alternative Technologies, All Rights Reserved Page 39

WHAT DOES PERCENT SCALABILITY MEAN?

 UNLABELED PERFORMANCE LABELED PERFORMANCE

0

100

200

300

400

1X 2X 3X 4X

SCALEUP AND SPEEDUP
PERCENT NOT A METRIC OF VALUE

0

100

200

300

400

1X 2X 3X 4X

75% SYSTEM 1

50% SYSTEM 2

50% SYSTEM 2

75% SYSTEM 1

C. 1998, Alternative Technologies, All Rights Reserved Page 40

SOME TYPES OF SCALABILITY

• Administrative scalability

• Platform scalability

• Processor scalability

• Horizontal scalability

MORE BOXES APPROACH

• Vertical scalability

BIGGER BOXES APPROACH

• Functional scalability - extensibility

• Hardware vs. software

C. 1998, Alternative Technologies, All Rights Reserved Page 41

WHAT AFFECTS SCALABILITY?

• Efficiency of Resource Usage

– DETERMINES BASELINE AND INCREMENTAL PERFORMANCE

– DYNAMIC OPTIMIZATION

• Parallelism

– IMPROVES RESOURCE USAGE

• State Management

– CLIENT (COOKIE)

– MIDDLEWARE

– APPLICATION SERVER

– STATE SERVER

• Load Balancing and Scheduling
– ROUND ROBIN, FIFO, LEAST LOAD

C. 1998, Alternative Technologies, All Rights Reserved Page 42

WHAT ENABLES SCALABILITY?

• Application Tool Flexibility

• Designing for Multi-user Systems

• Context-free Applications and Transactions

– NON-CONVERSATIONAL

– STATELESS SESSIONS

• Capacity

• Configuration Control

Choosing the right architecture(s) for the job!

C. 1998, Alternative Technologies, All Rights Reserved Page 43

PLATFORM SCALABILITY
CLUSTERING

• Clustering Primarily Provides, and Is Used For,
High Availability

– GENERALLY NOT A SCALABILITY SOLUTION

• Great Care Is Required to Obtain Even Moderate
Scaleup or Speedup

– CROSS-NODE CLUSTER RESOURCE USAGES IS NON-LINEAR

• Designed More Like a Federation of Loosely
Coupled Systems

• Costs Can Be High

– DESIGN TIME, ADDITIONAL ADMINISTRATION, POSSIBLY
CODING, AND LOCK OR CACHE COHERENCE MANAGEMENT

C. 1998, Alternative Technologies, All Rights Reserved Page 44

PROCESSOR SCALABILITY
NOT AN ABSOLUTE ATTRIBUTE

DOES “X” EQUAL1 OR 10? RANGE MATTERS!

0

100

200

300

400

1X 2X 3X 4X

Number of CPUs

T
ra

n
s
a
c
ti

o
n

s
 /

 s
e
c

100%
75%

50%

C. 1998, Alternative Technologies, All Rights Reserved Page 45

PROCESSOR SCALABILITY

ARBITRARY SPEEDUP IS NOT POSSIBLE

PROCESSOR SPEEDUP (T) FOLLOWS AMDAHL’S LAW:
T = 1 / ((1 – M) + (M / N))

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 1

N = #CPUs

T
 =

 S
P

E
E

D
U

P

IF M=0.8 (80%), T<5

IF M=0.4 (40%), T<1.66…

C. 1998, Alternative Technologies, All Rights Reserved Page 46

PERFORMANCE

C. 1998, Alternative Technologies, All Rights Reserved Page 47

PERFORMANCE
DEFINITION

• (MINIMUM) RESPONSE TIME

– TIME TO FIRST RESPONSE

• ELAPSED TIME

– AMOUNT OF TIME TO COMPLETE A UNIT OF WORK

• THROUGHPUT

– AMOUNT OF WORK COMPLETED IN A TIME PERIOD

– FOR A SINGLE TYPE OF REQUEST

– FOR A SPECIFIC WORKLOAD MIX

• CONCURRENCY

– NUMBERS OF USERS ACTIVE

– CONNECTED USERS AFFECT SYSTEM LOAD

C. 1998, Alternative Technologies, All Rights Reserved Page 48

WHAT IS PERFORMANCE?

• COMPARING PERFORMANCE

– WITH RESPECT TO FIXED RESOURCES

– FOR A PARTICULAR WORKLOAD

» NUMBER OF USERS, TRANSACTION RATE

» TRANSACTION COMPLEXITY, DB SIZE, ETC.

• PERFORMANCE BENCHMARKS

– RESOURCES AREN’T FIXED

– WORKLOADS AREN’T WELL-DEFINED

– RESULTS AREN’T REPEATABLE

Transaction design is crucial!

C. 1998, Alternative Technologies, All Rights Reserved Page 49

PERFORMANCE
MINIMUM RESPONSE TIME

MIINIMUM RESPONSE TIME IS PERCEIVED!

• Defer Confirming Request Send

• Confirm Request Receipt Immediately

• Give the User More to Do by Not Blocking

• Minimize Request Responses

– AVOID UNNECESSARY REPORTS AND BROWSING UPDATES

C. 1998, Alternative Technologies, All Rights Reserved Page 50

PERFORMANCE
ELAPSED TIME

(aka COMPLETE RESPONSE TIME)

• Minimize Inter-Component Communication

– WITHIN A BUSINESS TRANSACTION

• Minimize State Management

• Avoid Inter-component Synchronization

– STATE SHOULD NOT BE DISTRIBUTED

– IMPLIES REQUEST CANNOT BE CONVERSATIONAL

• Add Resources As Required

– ONLY WORKS IF REQUEST IS NON-PROCEDURAL

C. 1998, Alternative Technologies, All Rights Reserved Page 51

PERFORMANCE
THROUGHPUT

• Set Task Priorities by Request Class

• Balance Load Across Platform Resources

• Tune Servers for the Entire Workload

– AVOID TUNING FOR A SINGLE REQUEST

• Add Resources to Achieve Desired Throughput

• Balance Load Within Each Platform

– PARALLEL SUB-TASKS SHOULD COMPLETE TOGETHER

C. 1998, Alternative Technologies, All Rights Reserved Page 52

PERFORMANCE
CONCURRENCY

RESOURCE CONFLICTS ARE THE PRIMARY ENEMY

• Minimize Resource Usage

• Localize Each Resource Use in Time

• Avoid Resource Waits Through Transaction Design

– CONFLICT ANALYSIS CAN HELP WITH SCHEDULING

• Use Connection Multi-plexing and Pooling to
Minimize Overhead

• Balance User Load

– ACROSS PLATFORM RESOURCES

– WITHIN PLATFORM RESOURCES

C. 1998, Alternative Technologies, All Rights Reserved Page 53

TRANSACTIONS

CONCEPTS, DESIGN, AND MANAGEMENT

C. 1998, Alternative Technologies, All Rights Reserved Page 54

TRANSACTIONS
DEFINITION

A UNIT OF WORK HAVING WELL-DEFINED
BOUNDARIES

• BUSINESS TRANSACTION

– THE UNIT OF AUDIT

– BOUNDARIES ARE AUDIT POINTS

• LOGICAL TRANSACTION

– THE UNIT OF CONSISTENCY

– BOUNDARIES MEET A SET OF CONSISTENCY CONDITIONS

• PHYSICAL TRANSACTION

– THE UNIT OF RECOVERY

– BOUNDARIES ARE RECOVERABLE STATES

C. 1998, Alternative Technologies, All Rights Reserved Page 55

UNDERSTANDING TRANSACTIONS
BUSINESS TRANSACTIONS

ONLY BUSINESS TRANSACTIONS (UNIT OF
AUDIT) ARE IMPLEMENTATION INDEPENDENT

- VERSUS LOGICAL TRANSACTIONS (UNIT OF
CONSISTENCY)

- VERSUS PHYSICAL TRANSACTIONS (UNIT OF RECOVERY)

 1X 2X 5X

C. 1998, Alternative Technologies, All Rights Reserved Page 56

UNDERSTANDING TRANSACTIONS
LOGICAL TRANSACTIONS

• Maintain Integrity and Consistency

• Transition a Database Between Two Consistent
States

• Requires ACID Properties

– ATOMICITY - ALL OR NOTHING

» STATEMENT ATOMICITY IS PART OF RELATIONAL MODEL

– CONSISTENCY

– ISOLATION

– DURABILITY

C. 1998, Alternative Technologies, All Rights Reserved Page 57

UNDERSTANDING TRANSACTIONS
 LOGICAL TRANSACTIONS

• Serializability

• Isolation and Anomalies

– LOST UPDATES

» ONE TRANSACTION OVERWRITES ANOTHER’S UPDATE

– UNCOMMITTED DEPENDENCIES

» ONE TRANSACTION READS/UPDATES ANOTHER'S
UNCOMMITTED UPDATE

» THE UNCOMMITTED DATA IS SOMETIMES CALLED A
“PHANTOM”

C. 1998, Alternative Technologies, All Rights Reserved Page 58

UNDERSTANDING TRANSACTIONS
 LOGICAL TRANSACTIONS

• Isolation and Anomalies (continued)

– INCONSISTENT ANALYSIS

» ONE TRANSACTION IS PERMITTED TO READ DATA BOTH
BEFORE AND AFTER ANOTHER TRANSACTION UPDATES IT

» NON-REPEATABLE READS

• Special Types of Transactions

– SAVEPOINTS

– ASYNCHRONOUS TRANSACTIONS

– NESTED TRANSACTIONS

C. 1998, Alternative Technologies, All Rights Reserved Page 59

UNDERSTANDING TRANSACTIONS
 LOGICAL TRANSACTIONS

• Remote Transactions

• Distributed Transactions

– TWO-PHASE COMMIT

• Explicit Transaction Boundaries

– CRITICAL FOR DISTRIBUTED SYSTEMS!

– NECESSARY FOR TP MONITOR INTERFACES

C. 1998, Alternative Technologies, All Rights Reserved Page 60

• Understand transaction structure
– AN INITIAL READ PHASE

– AVOID RE-READING DATA

– A WRITE PHASE THAT BEGINS WITH THE FIRST INSERT,
UPDATE, OR DELETE

• Minimize the write phase
– DATA TOUCHED

– TIME TO COMMIT

– CONSIDER PRE-READING DURING THE READ PHASE

• Minimize transaction scope
– MINIMIZE NUMBER OF ACTIONS

• Non-conversational transactions are best

UNDERSTANDING TRANSACTIONS
 DESIGN ISSUES

C. 1998, Alternative Technologies, All Rights Reserved Page 61

UNDERSTANDING TRANSACTIONS
DESIGN ISSUES

 BEGIN ONLY COMMIT!

 MINIMIZE TIME AND DATA SCOPE

READ PHASE

WRITE

PHASE

E

X

C

L

U

I

V

E

S

H

A

R

E

D

C. 1998, Alternative Technologies, All Rights Reserved Page 62

TRANSACTION DESIGN
CONFLICT ANALYSIS

• Identify transactions that can interfere

• Why?

– SCHEDULE TRANSACTIONS AND REDUCE CONTENTION

» Avoid submitting two or more transactions that require
locking to guarantee isolation

» Unfortunately, you must do the scheduling yourself.

– INCREASE RESPONSE TIME AND THROUGHPUT

C. 1998, Alternative Technologies, All Rights Reserved Page 63

TRANSACTION DESIGN
CONFLICT ANALYSIS

Two transactions cannot interfere if:

– THEY DON'T TOUCH THE SAME DATA

– THEY ARE READ ONLY

– THEY COMMUTE

OR

– THEY DON'T RUN AT THE SAME TIME

C. 1998, Alternative Technologies, All Rights Reserved Page 64

TRANSACTION DESIGN
CONFLICT ANALYSIS

Two Transactions Cannot Interfere If:

– THEY DON'T TOUCH THE SAME DATA

– THEY ARE READ ONLY

– THEY COMMUTE

OR

– THEY DON'T RUN AT THE SAME TIME

C. 1998, Alternative Technologies, All Rights Reserved Page 65

CONFLICT EXAMPLE

 Which pairs of the following can interfere?

• 1: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ AND CITY = ‘NEW YORK’

• 2: UPDATE SUPPLIERS SET SNAME = ‘OLD_CO_NAME’ WHERE
SNAME = ‘NEW_CO_NAME’ AND CITY = ‘NEW YORK’

• 3: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ AND CITY <> ‘NEW YORK’

• 4: UPDATE SUPPLIERS SET SNAME = ‘NEW_CO_NAME’ WHERE
SNAME = ‘OLD_CO_NAME’ OR CITY <> ‘NEW YORK’

• What level of transaction isolation enforcement is required?

• What is the effect of existence or non-existence of indexes?

C. 1998, Alternative Technologies, All Rights Reserved Page 66

PRINCIPLES
OF

SCALABLE DESIGN

C. 1998, Alternative Technologies, All Rights Reserved Page 67

WHY DO IMPLEMENTATIONS FAIL?

• Minimize State Management

– BUSINESS FUNCTION REQUESTS

– MAINTAIN AUDIT POINTS IN A DATABASE

• Avoid Optimistic Concurrency Control

– TOO DIFFICULT TO MAINTAIN CONSISTENCY

• Implementation and Maintenance Must Be
Disciplined

• Performance or Scalability Must Be Planned

• System Management Must Be Designed-In

• Perform a Cost/Benefit Analysis

C. 1998, Alternative Technologies, All Rights Reserved Page 68

WHY DO IMPLEMENTATIONS FAIL?

• Server Design Should Not Be Too Use Specific

– GENERIC SERVER DESIGNS ENSURE FLEXIBILITY

– DATABASE DESIGNS AND DBMS TUNING AS A SYSTEM

• Avoid Field-by-field Validation

– FROM CLIENT TO SERVER

• Avoid Excessive Messaging

– CACHE DATA WHEN RE-USE IS ANTICIPATED

– AVOID TRANSACTION ROLLBACK

– SEND ENTIRE TRANSACTIONS

– USE SET PROCESSING

C. 1998, Alternative Technologies, All Rights Reserved Page 69

APPLICATION DESIGN ISSUES

• Architecture

– LOCATE PROCESS ACCORDING TO INTEGRITY RULES

– STATE-FREE VERSUS STATE-DEPENDENT INTEGRITY RULES

• Application type and design

– USE STATELESS SESSIONS

– AVOID CONVERSATIONAL SERVER INTERACTIONS

– CONSIDER MULTIPLE PARALLEL SESSIONS (CHECK
OVERHEAD FIRST)

– USE SET PROCESSING

C. 1998, Alternative Technologies, All Rights Reserved Page 70

APPLICATION DESIGN ISSUES

• Use Proper Transaction Design Techniques

• Design for:

– COMPONENT-BASED APPLICATION SERVICES

» COARSE GRAINED COMPONENTS RECEIVE FRONT-END
REQUESTS

» SHOULD SUPPORT BUSINESS TRANSACTIONS

» IMPLEMENT VIA FINE GRAINED COMPONENTS

– STORED PROCEDURES

– ASYNCHRONOUS MESSAGES

» FRONT-END SHOULD NEVER BLOCK

– TRANSACTION SHIPPING

C. 1998, Alternative Technologies, All Rights Reserved Page 71

DATABASE DESIGN ISSUES

• Normalize the Logical Design

• Avoid Denormalization and Nulls in the Physical
Design

• Use Association Tables and Lookup Tables

• Use Surrogate Keys

• Enforce Orthogonality, Completeness, and
Minimality Design Principles

• Concurrency and Conflict Analysis

These Provide Implementation Independence!

C. 1998, Alternative Technologies, All Rights Reserved Page 72

SUMMARY

• Good Distributed Application Design Is Different!
– DON’T LET OLD HABITS GET IN THE WAY OF SUCCESS

• Use The Right Architecture for the Job
– INVEST IN THE ARCHITECTURE(S) YOU NEED FROM THE

BEGINNING

• Design Your Transactions for Concurrency and
Stateless Behavior
– SCALABILITY WILL FOLLOW ASSUMING THE ARCHITECTURE IS

SCALABLE

– INSIST THAT YOUR DBMS BECOME MORE AND MORE
RELATIONAL

C. 1998, Alternative Technologies, All Rights Reserved Page 73

BIOGRAPHY

 David McGoveran is a well-known relational
database consultant and president of Alternative
Technologies (Boulder Creek, CA), specialists in
solving difficult relational applications problems
since 1981. He published The Database Product
Evaluation Report Series; has authored (with Chris
Date) A Guide to SYBASE and SQL Server; and is
completing Zero Management: Business in the Next
Millenium. This seminar is based partially on his
workshop: The Client/Server University: Designing
Effective Applications.

C. 1998, Alternative Technologies, All Rights Reserved Page 74

PLEASE FILL OUT YOUR
EVALUATIONS...

Thank you!

